
6
TSM Procedures

Introduction . 6-2

<TSM>GetNextSend . 6-3
<TSM>GetRCB . 6-4
<TSM>ProcessGetRCB . 6-6
<TSM>FastProcessGetRCB . 6-8
<TSM>RcvComplete . 6-10
<TSM>FastRcvComplete . 6-11
<TSM>RegisterHSM . 6-12
<TSM>SendComplete . 6-13
<TSM>FastSendComplete . 6-14
<TSM>UpdateMulticast . 6-15

RXNetTSMGetRCB . 6-16
RXNetTSMRcvEvent . 6-19
RXNetTSMFastRcvEvent . 6-20

Version 1.00 6 – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

This chapter describes the topology specific procedures provided as tools
for HSM developers.

The Topology Specific Module, <TSM>.NLM, manages the operations
that are unique to a specific media type. Multiple frame support is
implemented in the Topology Module so that all frame types for a given
media are supported.

The topology specific functions are indicated with <TSM>. The
developer must replace <TSM> with the appropriate media type
depending on which module is used. Since the driver must be
assembled with case sensitivity on, the names must be used exactly as
shown.

ETHERTSM.NLM replace <TSM> with: EtherTSM
TOKENTSM.NLM replace <TSM> with: TokenTSM
RXNETTSM.NLM replace <TSM> with: RXNetTSM
PCN2LTSM.NLM replace <TSM> with: PCN2LTSM
FDDITSM.NLM replace <TSM> with: FDDITSM

RX-Net drivers require special consideration to handle split packets.
Several routines are provided that are specific to the RX-Net module.
These routines are described at the conclusion of this chapter.

6 – 2 Version 1.00

Chapter 6 • TSM Procedures

<TSM>GetNextSend

On Entry

EBP Pointer to the Adapter Data Space

Interrupts are disabled

Call at process or interrupt time

On Return

EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ESI Pointer to the next TCB to transmit if successful.

This routine will decrement MSMTxFreeCount.

ECX Padded packet length (Ethernet only)

Zero Flag Set if successful; otherwise there are no TCBs queued or the

adapter is currently using all of its transmit resources and

cannot accept another packet (MSMTxFreeCount = 0).

Interrupts are disabled

Description This function retrieves the next ECB to be sent from the MSM’s
transmit waiting queue. It then builds a TCB and gives it to the HSM
for transmission. If the send queue is empty, this function clears the
zero flag and returns.

Note: The DriverSend routine may use ECBs instead of TCBs by initializing
the DriverParameterBlock variable DriverSendWantsECBs to a non-zero
value (see Chapter 3). In this case, <TSM>GetNextSend will simply
retrieve the next ECB to be sent (without building a TCB).

Example

DriverISR proc
•
•
•

TransmitComplete: ; EBP = Ptr to Adapter Data Space

inc [ebp].MSMTxFreeCount ; Free adapter’s transmit resource
mov [ebp].TxInProgress, 0 ; Clear transmit in progress flag

;*** Transmit Next Packet ***

call <TSM>GetNextSend ; Get the next TCB from the queue
jnz NoSendsQueued ; Jump if nothing to send
call DriverSend ; Otherwise send the packet
•
•
•

DriverISR endp

Version 1.00 6 – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

<TSM>GetRCB
(For RX-Net see "RXNetTSMGetRCB")

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet header (LookAhead buffer)

ECX Size of the received packet

EAX Status of received packet for the Receive Monitor

(see DriverPromiscuousChange in Chapter 5)

Interrupts can be in any state

Call at process or interrupt time

On Return

Zero Flag Set if successful; otherwise an error occurred

ESI Pointer to the fragmented RCB if this call is successful

EDI Pointer to the fragment structure

(points to the RCBFragmentCount field of the RCB)

EBX Number of bytes to skip over from the beginning of packet

ECX Number of bytes remaining to read

Interrupts are disabled

Note EBP is preserved

Description This routine is called by the HSM to obtain a fragmented RCB for a
packet that has been received by the adapter. Drivers that cannot
handle fragmented receive buffers should obtain RCBs using either
MSMAllocateRCB or <TSM>ProcessGetRCB.

<TSM>GetRCB uses a LookAhead process in which the packet’s header
information is previewed before an RCB is given to the driver. This
way the TSM can first verify that it wants the packet, before the driver
transfers the entire packet from the adapter into an RCB.

The adapter’s data transfer method governs how the LookAhead process
is handled.

• If a programmed I/O adapter is being used, the HSM must
transfer the packet’s header information from the adapter into
a buffer maintained for this purpose. The number of bytes to
transfer is specified by the variable MSMMaxFrameHeaderSize

described in Chapter 4. The HSM must set ESI to point the
beginning of the LookAhead buffer before calling this routine.

6 – 4 Version 1.00

Chapter 6 • TSM Procedures

• If a shared RAM (memory-mapped I/O) adapter is being used,
the HSM can simply point ESI to the beginning of the packet
buffer in shared RAM.

On entry to this routine, ESI must point to the packet’s header
information (the LookAhead buffer) and ECX must contain the size of
the received packet. If the header verifies, the TSM will obtain an RCB
and use the LookAhead information to fill in the RCBReserved fields
before returning a pointer to the RCB in ESI.

After obtaining the RCB, the remainder of the packet must be
transferred into the RCB fragment buffers. EBX is the offset from the
beginning of the packet to start copying from and ECX contains the
number of bytes in the packet left to read.

After the HSM has read the rest of the packet, it must return the RCB
to the LSL using either the <TSM>RcvComplete / MSMServiceEvents

combination or by using <TSM>FastRcvComplete.

Note: If this routine returns an error completion code, the received packet
should be discarded.

Special Instructions Bus Master Adapters

Bus Master devices require RCBs to be preallocated. Since this routine
requires a LookAhead Buffer, preallocation is not possible. The HSM
can preallocate RCBs using the macro MSMAllocateRCB.

Example

mov ecx, [ebp].MSMMaxFrameHeaderSize ; Build LookAhead buffer
lea edi, [ebp].LookAheadBuffer
rep insb

lea esi, [ebp].LookAheadBuffer ; Ptr to LookAhead buffer
mov ecx, PacketSize ; Size of the received packet
call <TSM>GetRCB ; Get an RCB
jnz PacketNotAccepted ; Jump if Error
•
• (Copy remainder of the packet into the RCB)
•
call <TSM>RcvComplete ; Return RCB

Version 1.00 6 – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

<TSM>ProcessGetRCB
(For RX-Net see "RXNetTSMRcvEvent")

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet’s RCB

ECX Size of the received packet

EAX Status of received packet for the Receive Monitor

(see DriverPromiscuousChange in Chapter 5)

EDI Maximum packet size for the new RCB

Interrupts can be in any state

Call at process or interrupt time

On Return

Zero Flag Set if a new RCB was available

ESI Pointer to a new non-fragmented RCB (if the zero flag is set)

Interrupts are disabled

Note EBP is preserved

Description The HSM calls this routine to process an RCB for a received packet and
to preallocate a new non-fragmented RCB for the next packet.
The received packet must have been copied into the RCBDataBuffer.

Use this routine if the RCB was preallocated using MSMAllocateRCB

or was obtained from a previous call to this routine. In either case,
the RCBReserved fields have not been filled in, and therefore must be
completed by the TSM.

Note: If the adapter/driver is "ECB aware" and has already filled in all
required ECB fields as described in Chapter 4, the ECB should be
returned for processing using <TSM>RcvComplete/MSMServiceEvents

or <TSM>FastRcvComplete.

When this routine is called, the TSM examines the packet header
information. If the header verifies, the RCBReserved fields are filled in
and the RCB is directed to the Link Support Layer’s holding queue to
await processing. The TSM then obtains a new non-fragmented RCB,
if one is available, and returns it to the driver. If the packet header is
invalid, the RCB will be given back to the driver to be used again for
another packet.

The HSM must eventually use the macro MSMServiceEvents which
enables the RCB’s Event Service Routine to complete the processing.

6 – 6 Version 1.00

Chapter 6 • TSM Procedures

Special Instructions Ethernet

The HSM should start copying the packet from the 6 byte destination
field of the media header into the RCBDataBuffer field of the RCB.

Token-Ring

The HSM should start copying the packet from the Access Control byte
of the media header into the RCBDataBuffer field of the RCB.

FDDI

The HSM should start copying the packet from the Frame Control byte
of the media header into the RCBDataBuffer field of the RCB.

PCN2L

This routine is not available if using the PCN2L TSM.

Example

DriverInit proc
•
•
•
mov esi, [ebx].MLIDMaximumSize
call MSMAllocateRCB ; Preallocate first RCB and save.
•
•
•

DriverInit endp

DriverISR proc
•
•
•

ReceiveEvent:
•
• (Copy packet into the RCBDataBuffer field of the preallocated RCB)
•
xor eax, eax ; Good packet
mov ecx, PacketSize ; Size of received packet
mov edi, [ebx].MLIDMaximumSize ; Maximum size for new RCB
call <TSM>ProcessGetRCB ; Return RCB and get a new RCB
•
•
•

DriverISR endp

Version 1.00 6 – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

<TSM>FastProcessGetRCB
(For RX-Net see "RXNetTSMFastRcvEvent")

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet’s RCB

ECX Size of the received packet

EAX Status of received packet for the Receive Monitor

(see DriverPromiscuousChange in Chapter 5)

EDI Maximum packet size for the new RCB

Interrupts can be in any state (but might be enabled during the call)

Call at process or interrupt time

On Return

Zero Flag Set if a new RCB was available

ESI Pointer to a new non-fragmented RCB (if the zero flag is set)

Interrupts are disabled

Note EBP is preserved

Description <TSM>FastProcessGetRCB is identical to <TSM>ProcessGetRCB with
the exception that before this routine returns, the RCB’s Event Service
Routine is called to complete the processing. <TSM>ProcessGetRCB

used in conjunction with MSMServiceEvents will perform the same
task.

During the RCB’s Event Service Routine, the interrupts might be
enabled and all registers could be destroyed. The HSM should preserve
any needed registers before calling <TSM>FastProcessGetRCB.
If having the interrupts enabled is undesirable, the driver should use
the <TSM>ProcessGetRCB procedure and wait until the conclusion of
the receive routine before servicing events.

It is also important to note that the HSM’s DriverSend routine may be
called before this procedure returns. This can be prevented by starting
a critical section before calling this routine.

Caution: This routine calls the RCB’s Event Service Routine during which the
interrupts might be enabled and all registers could be destroyed.

This routine is not available if using the PCN2L TSM.

6 – 8 Version 1.00

Chapter 6 • TSM Procedures

Example

DriverInit proc
•
•
•
mov esi, [ebx].MLIDMaximumSize
call MSMAllocateRCB ; Preallocate first RCB and save.
•
•
•

DriverInit endp

DriverISR proc
•
•
•

ReceiveEvent:
•
• (Copy packet into the RCBDataBuffer field of the preallocated RCB)
•
xor eax, eax ; Good packet
mov ecx, PacketSize ; Size of received packet
mov edi, [ebx].MLIDMaximumSize ; Maximum size for new RCB
call <TSM>FastProcessGetRCB ; Return RCB, service events, and
• ; get a new RCB
•
•

DriverISR endp

Version 1.00 6 – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

<TSM>RcvComplete

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet’s RCB

Interrupts are disabled

Call at process or interrupt time

On Return

Interrupts are disabled

Note EBP, ESI, and EDI are preserved.

Description The HSM calls <TSM>RcvComplete to direct a completed RCB to the
Link Support Layer’s holding queue to await processing. Use this
routine if the RCB was obtained using the <TSM>GetRCB procedure
and the received packet has been copied into the RCB receive buffer(s).

Note: This procedure is also used if the adapter/driver is ECB aware and has
filled in all required ECB fields as described in Chapter 4.

When an RCB is queued using this routine, the HSM must eventually
use the macro MSMServiceEvents to call the RCB’s Event Service
Routine and complete the processing.

Special Instructions RX-Net

If an RX-Net Adapter/Driver is ECB aware (see Chapter 4), it is
responsible for handling packet reconstruction and fragmentation.
Once the packet is reconstructed, the HSM must set the second byte of
the DriverWorkspace field to one before calling this routine.

Example

mov ecx, [ebp].MSMMaxFrameHeaderSize ; Build the LookAhead buffer
lea edi, [ebp].LookAheadBuffer
rep insb

lea esi, [ebp].LookAheadBuffer ; Ptr to LookAhead buffer
mov ecx, PacketSize ; Size of the received packet
call <TSM>GetRCB ; Get an RCB
jnz PacketNotAccepted ; Jump if Error

•
• (Copy remainder of the packet into the RCB)
•

call <TSM>RcvComplete ; Return the RCB

6 – 10 Version 1.00

Chapter 6 • TSM Procedures

<TSM>FastRcvComplete

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet’s RCB

Interrupts are disabled (but might be enabled during the call)

Call at process or interrupt time

On Return

Interrupts are disabled

Note Assume all registers are destroyed.

Description <TSM>FastRcvComplete is identical to <TSM>RcvComplete with the
exception that before this routine returns, the RCB’s Event Service
Routine is called to complete the processing. Using <TSM>RcvComplete
in conjunction with MSMServiceEvents will perform the same task.

During the RCB’s Event Service Routine, the interrupts might be
enabled and all registers could be destroyed. The HSM should preserve
any needed registers before calling <TSM>FastRcvComplete. If having
the interrupts enabled is undesirable, the driver should use the
<TSM>RcvComplete procedure and wait until the conclusion of the
receive routine before servicing events.

It is also important to note that the HSM’s DriverSend routine may be
called before this procedure returns. This can be prevented by starting
a critical section before calling this routine.

Caution: This routine calls the RCB’s Event Service Routine during which the
interrupts might be enabled and all registers could be destroyed.

Example

mov ecx, [ebp].MSMMaxFrameHeaderSize ; Build the LookAhead buffer
lea edi, [ebp].LookAheadBuffer
rep insb

lea esi, [ebp].LookAheadBuffer ; Ptr to LookAhead buffer
mov ecx, PacketSize ; Size of the received packet
call <TSM>GetRCB ; Get an RCB
jnz PacketNotAccepted ; Jump if Error

•
• (Copy remainder of the packet into the RCB)
•

call <TSM>FastRcvComplete ; Return RCB and service events

Version 1.00 6 – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

<TSM>RegisterHSM

On Entry ESI Pointer to the DriverParameterBlock structure

Interrupts can be in any state

Call at initialization time only

On Return EAX Zero if successful; otherwise EAX points to an error
message that the driver must print using MSMPrintString
before returning to the operating system with EAX non-zero.

EBX Pointer to the Frame Data Space

Interrupts are disabled

Note All other registers are destroyed

Zero Flag Set if successful; otherwise an error occurred

Description The HSM’s DriverInit routine must call <TSM>RegisterHSM with a
pointer to its DriverParameterBlock structure in ESI. Before calling
this routine, DriverInit must save the value of the stack pointer in the
DriverStackPointer field of the DriverParameterBlock after pushing the
C registers EBP, EBX, ESI, and EDI. This routine then calls the MSM
which performs the following tasks:

• copies the parameter block into local data space
• processes driver firmware variables
• allocates the Frame Data Space
• copies the driver configuration table into the Frame Data Space
• parses information derived from the linker definition file
• places LSL’s maximum packet size in the configuration table
• initializes screen ID used for MSMPrintString procedures

Example

DriverInit proc
Cpush ; macro to save "C" registers
mov DriverStackPointer, esp ; Fill in stack pointer
lea esi, DriverParameterBlock ; Get pointer to Parameter Block
call <TSM>RegisterHSM ; Get a Frame Data Space
jnz DriverInitError ; Jump if error
•
•
•

xor eax, eax ; Successful return with EAX=0
Cpop ; Restore "C" registers
ret

DriverInitError:
mov esi, eax ; ESI=EAX= ptr to error message
call MSMPrintString ; Print the Message
Cpop ; Restore "C" Registers
ret ; Return (EAX is non-zero on errors)

DriverInit endp

6 – 12 Version 1.00

Chapter 6 • TSM Procedures

<TSM>SendComplete

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the Transmit Control Block (TCB)

Interrupts are disabled

Call at process or interrupt time

On Return

Interrupts are disabled

Note EBP is preserved.

Description This procedure is called to release a TCB after a packet has been
transmitted. It can be called by DriverISR after a transmit complete
interrupt or by the DriverSend routine before the actual transmission
is complete (a "lying send"), as long as all packet data has been
transferred into the adapter’s transmit buffer and access to the TCB is
no longer required.

This procedure returns the packet’s TCB to the MSM’s unused TCB
queue and directs the underlying Transmit ECB to the Link Support
Layer’s service queue.

The HSM must eventually use the macro MSMServiceEvents which
calls the ECB’s Event Service Routine. Typically, if the DriverSend
routine was called to transmit the next packet after a send complete
interrupt, then the interrupt service routine should invoke
MSMServiceEvents.

Note: The DriverSend routine may use ECBs instead of TCBs by initializing
the Driver Parameter Block variable DriverSendWantsECBs to a
non-zero value (see Chapter 3). In this case, <TSM>SendComplete will
simply direct the ECB to the LSL’s service queue.

Example

DriverSend proc
•
• (send the packet to the NIC)
•
cmp InDriverISR, 0
jnz <TSM>SendComplete
jmp <TSM>FastSendComplete

DriverSend endp

Version 1.00 6 – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

<TSM>FastSendComplete

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the Transmit Control Block (TCB)

Interrupts are disabled (but might be enabled during the call)

Call at process or interrupt time

On Return

Interrupts are disabled

Note All registers are destroyed.

Description <TSM>FastSendComplete is identical to <TSM>SendComplete with the
exception that before this routine returns, the TCB’s Event Service
Routine is called to notify the upper layers that the transmission is
complete. Using the <TSM>SendComplete / MSMServiceEvents

combination will perform the same task.

During the TCB’s Event Service Routine, the interrupts might be
enabled and all registers could be destroyed. The HSM should preserve
any needed registers before calling <TSM>FastSendComplete. It is also
important to note that the HSM’s DriverSend routine may be called
before this procedure returns. This can be prevented by starting a
critical section before calling this routine.

Example

DriverSend proc
•
• (send the packet to the NIC)
•
cmp InDriverISR, 0
jnz <TSM>SendComplete
jmp <TSM>FastSendComplete

DriverSend endp

6 – 14 Version 1.00

Chapter 6 • TSM Procedures

<TSM>UpdateMulticast

On Entry

EBP Pointer to the Adapter Data Space

Interrupts are disabled and remain disabled

Call at process or interrupt time

On Return

Interrupts are disabled

Note EBX and EBP are preserved

Description When this routine is called it passes the current multicast table
(maintained by the MSM) to the HSM’s DriverMulticastChange routine.
This allows the driver to update the adapter’s multicast address
registers.

This routine is called by internal TSM procedures each time the
multicast addresses are added to or deleted from the MSM’s multicast
table. This routine can also be called by the driver during the HSM’s
DriverReset routine.

Note: RX-Net does not support multicast addressing. This routine is not
available if the RXNetTSM module is used.

See Also Refer to the sections covering the following flags and variables for more
information on multicast addressing:

• Bit 3 of the MLIDModeFlags is used to indicate whether or not
multicast addressing is supported.

• Bits 9 and 10 of the MLIDFlags must be set appropriately to
reflect the multicast mechanism or format used by the
adapter/driver.

• The DriverParameterBlock variable, DriverMaxMulticast, must
be set to reflect the maximum number of multicast addresses the
adapter can handle.

Example

DriverReset proc
•
•
•
call <TSM>UpdateMulticast
•
•
•

DriverReset endp

Version 1.00 6 – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

RXNetTSMGetRCB

On Entry EBP Pointer to the Adapter Data Space

ESI Pointer to the LookAhead Buffer

Interrupts are in any state

Call at process or interrupt time

On Return Zero flag Set if successful; otherwise an error occurred

ESI Pointer to the RCB if this call is successful

EDI Pointer to the RCB fragment structure

(points to the RCBFragmentCount field of the RCB)

EBX contains the offset in the card’s buffer from which to start

copying data

ECX Number of bytes remaining to read

Interrupts are disabled

Note EBP is preserved

Description This routine is normally used for programmed I/O adapters.

RXNetTSMGetRCB uses a LookAhead process in which the packet’s
header information is previewed before an RCB is given to the driver.
This way the TSM can first verify that it wants the packet, before the
driver transfers the entire packet from the adapter into an RCB.

The LookAhead process requires the HSM to build a buffer containing
the packet’s header information as shown in Figure 6.1 on the following
page. The number of bytes required for the buffer is specified by the
variable MSMMaxFrameHeaderSize described in Chapter 4. The HSM
must set ESI to point to the beginning of the LookAhead buffer before
calling this routine. If the header verifies, this routine returns a
pointer to an RCB in ESI.

At this point, the HSM must transfer the remainder of the packet into
the RCB fragment structure. Since other fragments of a split packet
may have already been copied into the RCB buffers, the HSM must
perform the following operations.

• The dword value at [EDI – 4] indicates the number of bytes
currently in the RCB fragment buffers. This value can be used
along with the RCBFragmentLength fields to determine where
in the RCB fragment structure to begin copying the packet.

• Once the position is located, the HSM transfers the rest of the
packet into the RCB fragment structure. (EBX is the offset from

6 – 16 Version 1.00

Chapter 6 • TSM Procedures

the beginning of the card’s buffer to start copying from and ECX
is the number of bytes left to read.)

• Update the number of bytes currently in the RCB fragment
buffers by adding ECX bytes to the dword value at [EDI – 4].

After the HSM completes the above tasks, it must return the RCB using
either the <TSM>RcvComplete / MSMServiceEvents combination or by
using <TSM>FastRcvComplete.

Note: Using RXNetTSMGetRCB does not provide 100% support to a receive
monitor.

Short

SourceAddress

ByteOffset

ProtocolType

SplitFlag

SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeaderSize

DestinationAddress

Long

SourceAddress

ByteOffset

ProtocolType

SplitFlag

SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeaderSize

DestinationAddress

LongFlag

Exception

SourceAddress

ByteOffset

ProtocolType

SplitFlag

SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeaderSize

DestinationAddress

LongFlag

Pad 1: ProtocolType

Pad 4 : FFh

Pad 2 : SplitFlag

Pad 3 : FFh

Figure 6.1 Format of RX-Net LookAhead Buffer

Version 1.00 6 – 17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Example

•
• (Build the LookAheadBuffer)
•
lea esi,[ebp].LookAheadBuffer
call RXNetTSMGetRCB ; Get an RCB
jnz NoRCB ; Jump if there is an error
•
• (Determine the current fragment buffer position)
• (Transfer the rest of the packet into the RCB)
•
add [edi-4], ecx
call RXNetTSMRcvComplete ; Return the RCB

6 – 18 Version 1.00

Chapter 6 • TSM Procedures

RXNetTSMRcvEvent
(RX-Net only)

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet

Interrupts are in any state

Call at process or interrupt time

On Return

Zero Flag set if successful

Interrupts are disabled

Note EBP is preserved

Description RXNetTSMRcvEvent is only available to HSMs that use RX-Net shared
RAM cards and that use the RXNETTSM module. The only action the
HSM takes when a packet is received is to pass this routine a pointer
to the packet. If the packet is wanted, the TSM copies the entire packet
into an RCB, completing packet reception.

The HSM must eventually use the macro MSMServiceEvents which
enables the RCB’s Event Service Routine to complete the processing.

RX-Net cards that do not support shared RAM should either:

• Use the RXNetTSMGetRCB / <TSM>RcvComplete combination
to receive packets. This method does not provide 100% support
to a receive monitor.

• Copy the entire packet from the adapter into a buffer and call
this routine with a pointer to that buffer in ESI. This method
is the only way to provide 100% support to a receive monitor.

Example

mov esi, [ebp].CurrRxPage ; ESI -> Current Rx Page
xor [ebp].CurrRxPage, 0200h ; Toggle to the next page
call RXNetTSMRcvEvent ; Pass the packet to MSM
jmp ISRExit ; Finished receiving the packet

Version 1.00 6 – 19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

RXNetTSMFastRcvEvent
(RX-Net only)

On Entry

EBP Pointer to the Adapter Data Space

ESI Pointer to the received packet

Interrupts are in any state, but may be enabled

Call at process or interrupt time

On Return

Zero Flag set if successful

Interrupts are disabled

Note EBP is preserved

Description RXNetTSMFastRcvEvent is identical to RXNetTSMRcvEvent with the
exception that before this routine returns, the RCB’s event service
routine is called to complete the processing. Using
RXNetTSMGetRCB/RXNetTSMRcvEvent in conjunction with
MSMServiceEvents will perform the same task.

During the RCB’s Event Service Routine, the interrupts might be
enabled and all registers could be destroyed. The HSM should preserve
any needed registers before calling RXNetTSMFastRcvEvent. If having
the interrupts enabled is undesirable, the driver should use the
RXNetTSMRcvEvent procedure and wait until the conclusion of the
receive routine before servicing events.

It is also important to note that the HSM’s DriverSend routine may be
called before this procedure returns. This can be prevented by starting
a critical section before calling this routine.

Caution: This routine calls the RCB’s Event Service Routine, during which the
interrupts might be enabled and all registers could be destroyed.

Example

mov esi, [ebp].CurrRxPage ; location of received packet
call RXNetTSMFastRcvEvent

6 – 20 Version 1.00

